Web traffic spikes

Suppose that N people visit a website A every Δ seconds. Although each person looks at the website at fixed intervals, they start at different times. Assume these start times are uniformly distributed. At some time $t=0$, the website posts a link to another website, B. Assume that visitors to A at times $t \geq 0$ will follow the link the first time they see it.

Clearly website B will see continuous traffic at a constant rate $R=N / \Delta$ (in hits per second) for $0 \leq t \leq \Delta$, since visitors from the first website will arrive from the moment after the link is posted (corresponding to users who last checked the website at time $t=-\Delta$) until time $t=\Delta$ (corresponding to users who last checked the website a moment before the link was posted):

Call this function $R h(t / \Delta)$, where $h(x)$ is the function which is 1 for $0 \leq x \leq 1$ and 0 elsewhere.

Realistically, all the users of a website do not check it at equal fixed intervals. Instead consider a population N_{0} of users, each of whom has a different check interval Δ. The Δ are distributed according to $p(\Delta)$, so that there are $N_{0} p(\Delta) d \Delta$ users who check the website at intervals between Δ and $\Delta+d \Delta$:

(Note that $p(0)=0$.) The traffic experienced by B is the sum of a set of functions like $h(t)$. There are $N_{0} p(\Delta) d \Delta$ users who check site A at intervals $[\Delta, \Delta+d \Delta]$, and these users will give rise to traffic $N_{0} h(t / \Delta) p(\Delta) d \Delta / \Delta$. The total traffic $r(t)$ experi-
enced by B at $t \geq 0$ is then given by,

$$
r(t)=N_{0} \int_{0}^{\infty} \frac{h(t / \Delta) p(\Delta) d \Delta}{\Delta} .
$$

$h(t / \Delta)$ is a function which is 1 when $\Delta>t$ and 0 when $0 \leq \Delta \leq t$. So,

$$
r(t)=N_{0} \int_{t}^{\infty} \frac{p(\Delta) d \Delta}{\Delta}
$$

Notice that $r(t)$ is a strictly decreasing function of t, so the traffic spikes at $t=0$ and declines after that. As an analytic example, suppose that $p(\Delta)=1 /(b-a)$ for $a<\Delta<b$, and 0 elsewhere. This yields,

$$
\frac{(b-a)}{N_{0}} r(t)= \begin{cases}\log (a / b) & t<a \\ \log (t / b) & a \leq t<b \\ 0 & b \leq t\end{cases}
$$

Sketching the form of $r(t)$, we see something like:

